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Abstract 
 

The development of a Common Criteria protection 
profile for high-robustness separation kernels requires 
explicit modifications of several Common Criteria 
requirements as well as extrapolation from existing 
(e.g., medium robustness) guidance and decisions. The 
draft U.S. Government Protection Profile for 
Separation Kernels in Environments Requiring High 
Robustness  (SKPP) is intended to be applicable to a 
class of products (the target of evaluation, or TOE) 
that includes, but is not limited to, real time and 
embedded systems. This paper describes certain SKPP 
concepts and requirements and provides underlying 
motivations and rationale for their inclusion in the 
SKPP.  Primary areas of focus are the security 
requirements regarding information flow, dynamic 
configuration, and the application of the principle of 
least privilege to restrict actions of active entities. 

Keywords:  common criteria, separation kernel, 
high robustness, dynamic configuration, least 
privilege. 

 
 

1. Introduction 
 

In the U.S., there has been an increased interest in 
the use of separation kernels to support real-time 
embedded systems and virtual machine monitors.  A 
number of products are forthcoming and some of those 
products will be used in environments requiring high 
robustness. The effort to create the U.S. Government 
Protection Profile for Separation Kernels in 
Environments Requiring High Robustness (SKPP) was 
started to respond to this need [1].  This protection 
profile is based on CC Version 2.2 [2]. 

 Since both separation kernels and high robustness 
are in an uncharted territory of the Common Criteria 
(CC) landscape, development of a protection profile 
for this class of products presented several challenges, 
some of which were: 

 Description of the TOE abstractions in the 
Common Criteria context, 

 Extensions to several Common Criteria 
requirements, and 

 Extrapolation from existing guidance and 
protection profiles for medium robustness 
environments [3, 4]. 

Since the initial release for public review in 2004, 
the SKPP has been substantially revised and is pending 
release.  This paper describes the rationale for certain 
concepts and requirements that first appeared in the 
initial version as well as some that are new in the 
current draft.  The general characteristics of a 
separation kernel and the specific instantiation of those 
characteristics captured in the SKPP are presented.  
This is followed by a discussion of some of the high 
robustness issues currently being addressed for the 
SKPP.  A summary of the on-going transition to CC 
Version 3.0 is also provided [5].  It is not an objective 
of this paper to provide a comparative analysis of 
separation kernel relative to other technologies, e.g., 
[6, 7, 8, 9, 10]. 

 
2. What is high robustness? 

 
The Common Criteria is an internationally-

recognized standard for security evaluation of IT 
products [2, 5].  In the CC framework, a Protection 
Profile (PP) is a collection of implementation 
independent security requirements for a class of target 
products intended to undergo CC evaluation, i.e., a 
Target of Evaluation (TOE) class.  A Security Target 
(ST), on the other hand, is a set of implementation-
specific security requirements for a particular TOE.   

The CC defines six building blocks for a PP/ST:  
TOE description, security environment description, 
security objectives, security functional requirements, 
security assurance requirements, and rationale 
statements on the traceability mapping of the first five 
building blocks.  With respect to assurance, the CC 
defines a seven-level assurance scale that measures, 
through independent evaluation, the breadth, depth, 
and rigor of the security properties of the target system.    
The evaluation assurance levels (EAL) range from 
EAL1 (lowest) to EAL7 (highest).  Although the CC is 
internationally accepted, only evaluations at EAL4 and 



below are mutually recognized by the participating CC 
members.  Individual members structure CC 
evaluations with what is called a “national scheme.”  

In the U.S. scheme, robustness is a metric used to 
measure the TOE’s ability to protect itself and its 
resources.  A PP must declare its degree of robustness 
[3].   Robustness is defined in terms of the strength of 
the TOE’s security mechanisms and its level of 
assurance [11].  There are three levels of robustness:  
high, medium, and basic. High robustness is defined as 
“security services and mechanisms that provide the 
most stringent protection and rigorous security 
countermeasures.” [12] The need for robustness in a 
TOE is a function of the value of the data that the TOE 
protects and the threats identified for the environment 
in which the TOE is employed.  High robustness can 
counter extremely sophisticated and well-funded 
threats and therefore can be used to protect high-value 
data [11]. 
 
3. Separation Kernel characteristics 

 
John Rushby introduced the separation kernel 

concept in 1981 [13] and subsequently discussed it in 
terms of partitioning kernel in the context of avionics 
systems [14].  Separation kernel concepts have also 
been previously discussed with respect to security 
evaluation [15] and implemented in commercial 
systems, e.g., PR/SM [16]. 

Like other security kernels, a separation kernel 
manages all resources under its control and can protect 
itself so that it cannot be attacked.  A separation kernel 
divides all resources into partitions representing 
different policy equivalence classes and controls the 
interaction between partitions.  Controlled interaction 
means that the actions of a subject in one partition 
cannot be detected or communicated to a subject in 
another partition, unless the kernel has established an 
explicit means for such communication. 

Similar to a Type I virtual machine monitor [17], a 
separation kernel achieves isolation of resources in 
different partitions by virtualization of shared 
resources, e.g. devices, memory, and the clock, such 
that each partition is assigned as a set of resources that 
appears to be entirely its own.  The kernel also creates 
the abstractions of resources in the form of abstract 
data types that are exported at the kernel interface. 

Another general characteristic is the way a 
separation kernel manages the runtime resources.  
Resources are the aggregate of hardware, software and 
data that are either used for the implementation of the 
kernel or exported at the kernel interface.  Exported 
resources include subjects, which are active entities 
and other non-active entities such as memory, files, 
devices, buffers, volumes, etc.   

In addition to these general characteristics, the 
SKPP requires other characteristics, discussed below. 

 
3.1.  Limited security functionality  

 
A SKPP-conformant separation kernel will be 

subjected to a high level of scrutiny during its 
evaluation and validation cycles, and thus must be 
minimized in complexity regarding functionality and 
design.  The core functionalities include the separation 
and isolation of all resources, the control of 
information flows between partitions and between 
resources, the controlled sharing of selected resources, 
and the management of security functions and audit 
services.  The limited nature of the security 
functionality allows this type of separation kernels to 
be used as the trusted foundation of a secure system or 
as an embedded component within a larger system. 

 
3.2.  No runtime user interface 

 
The SKPP is intended to be applicable to embedded 

as well as other types of systems.  For the former, the 
kernel, once configured, operates autonomously 
without human intervention.  Hence, the SKPP defines 
no functional requirements for identification and 
authentication of users, administrative roles support, 
and the allocation of administrative roles to security 
management functions. Since there will be no 
administrators to monitor and maintain the kernel 
during runtime, additional assurance measures are 
inherently required to ensure highly robust autonomous 
execution of the security management functions.  Note 
that it is allowed for the ST author to specify additional 
requirements for administrative roles in support of a 
specific kernel implementation. 

 
3.3.  Static runtime configuration 
 

In general, the runtime behavior of a separation 
kernel is determined by its configuration data.  The 
configuration data specifies how resources are 
allocated for both time and space, and what policy 
rules are to be enforced.  The SKPP supports both 
static and dynamic configuration.  With static 
configuration, the configuration data is statically 
defined and maintained during the runtime execution; 
time and space resource allocations and policy rules 
cannot be changed after the kernel is initialized. 

Because of its simplicity, a completely static 
separation kernel is ideal for research on the rapid 
creation of evaluatable high assurance systems.  If the 
configuration does not change during runtime, the 
kernel design and implementation can be relatively 
simple and small, making it suitable for high 
robustness evaluation.  The fundamental security 



service provided by a statically-configured separation 
kernel is separation of the activities occurring in 
different partitions. This enables the kernel to be used 
as a trusted building block for more complex systems. 

However, in some exigent scenarios (e.g., the 
failure of a peripheral device in a mission critical 
application), it may be desirable for the kernel to be 
able to change its security configuration.  Thus, the 
SKPP allows the kernel to provide a capability to 
change the current configuration during runtime to 
another, pre-loaded, configuration. Configuration 
change will be discussed further in Section 5.2. 

 
3.4.  Support privileged subjects 
 

For highly robust security systems, the principle of 
least privilege is a significant factor that, to date, has 
not been explicitly addressed as a security functional 
requirement in the Common Criteria.  It is vaguely 
implied in the ADV_INT assurance requirements [2], 
which could be subject to unsound interpretation.  
Least privilege prescribes restrictions to actions of 
active entities including the internal modules and 
technical measures that comprise the TOE security 
functions, and the subjects (e.g., application programs) 
in the TOE scope of control.  In the SKPP, the 
restriction is that these entities must not have any more 
“privilege” (viz., access to resources) than is necessary 
to perform the actions for which they were designed.  
Exceptions to this requirement are allowed for certain 
degenerate designs.  How the principle of least 
privilege is used in the SKPP is further discussed in 
Section 5. 

 
3.5.  Generate audit records 
 

The SKPP requires the kernel to detect a set of 
auditable events and capture information that 
characterizes each event in a form that can be 
interpreted by an external review mechanism.  The 
kernel is not required to notify the operational 
environment of the existence of the audit record or to 
automatically export the information to the 
environment.  
 
4.  SKPP Target of Evaluation overview 

 
As shown in Figure 1, the TOE boundary 

encompasses the following components: 
 TOE Security Functions (TSF) 
 Initialization mechanism 
 Configuration mechanism 
 Trusted delivery mechanism 

The CC divides security requirements into two 
categories, functional and assurance.  The security 

functional requirements are levied only on the TSF 
while the security assurance requirements are imposed 
on the entire TOE.  The following sections discuss the 
security requirements included in the current SKPP 
working draft, which is based on CC Version 2.2.  

 

 
 
4.1. Security functional requirements 

 
The CC organizes security requirements in terms of 

classes, families and components.  The SKPP utilizes 
six of the eleven CC-defined classes of security 
functional requirements based on the security 
objectives identified for the TOE and its environment.  
Figure 2 summarizes the security functional 
requirements included in the SKPP at the class and 
family levels.   

Except for two functional classes, Security Audit 
and User Data Protection, the other four functional 
classes include extended requirements are that not 
contained in Part 2 of the CC.  These extended 
requirements are necessary because some of the 
security objectives identified in the SKPP need 
requirements that either do not exist in the CC or 
cannot be directly mapped to the existing CC 
requirements.  In the Identification and Authentication 
class, the requirements in the FIA_ATD and FIA_USB 
families are modified to require that the configuration 
data must specify the security attributes of resources, 
and that the TSF binds these security attributes to 
exported resources when the resources are created 
during initialization. 

In the Security Management class, the requirements 
in the FMT_MOF, FMT_MSA, and FMT_MTD 
families are modified to require the TSF to restrict 
access to privileged operations to authorized subjects, 
to assign authorizations to subjects as specified by the 
configuration data, and to protect the integrity of the 
configuration data at all times. 

The Protection of the TSF class (FPT) includes five 
new families and two modified families, FPT_FLS and 
FPT_RCV.  The new families contain requirements 
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Figure 1.  TOE and TSF boundary 



regarding the run-time configuration change capability, 
establishment of secure state, application of the 
principle of least privilege on TSF internal functions 
and modules, secure halt, and secure restart.  The 
FPT_FLS and FPT_RCV requirements are modified to 
explicitly define the requirements for preservation of 
secure state and the TSF responses to security failures.    

The last extended security functional requirement 
belongs to a new family in the Resource Utilization 
class.   This requirement addresses the objective that 
the TSF exhibits predictable utilization of both time 
and space resources. 

 
4.2.   Security assurance requirements 

 
The evaluation target of the SKPP-conformant TOE 

is EAL6 augmented with a formal security policy 
model and additional assurance requirements related to 
development, flaw remediation and independent 
testing.  Having a formal model ensures that the 
security policy implemented by the separation kernel is 
sound and self-consistent. 

Extended security assurance requirements are added 
to the Development assurance class (ADV) to address 
the security objectives for the soundness of the 
architectural design of the TSF with in-depth analysis 
of the FPT_SEP and FPT_RVM requirements, trusted 
initialization, and trusted configuration data generation 
and validation.  Furthermore,  the ADO_DEL family in 
the Delivery and Operation assurance class is also 
modified to require a delivery capability that uses 
cryptographic services to protect the TOE against 
modifications and masquerading attempts during the 
TOE delivery to the users. 

In the CC framework, security functional 
requirements are levied on the TSF, not the TOE.  To 

achieve a high level of confidence that the TOE 
initialization mechanism will correctly establish the 
TSF in its initial secure state, we extended 
requirements in the Development class to precisely 
state both functional and assurance requirements for 
the initialization mechanism.  In addition to 
establishing the initial secure state, the initialization 
mechanism must also maintain the integrity of the TSF 
during the initialization process and not interfere with 
the TSF after the initialization process completes. 

Similarly, it is important to levy both functional and 
assurance requirements on the configuration data 

generation and validation mechanism because the TSF 
depends on the correctness of the configuration data to 
establish the TOE security policy.  This mechanism 
must preserve the semantics of the configuration data 
in both human and machine readable forms.  Regarding 
assurance requirements, it is also subjected to the same 
level of analysis and testing as other non-TSF TOE 
components. 

 
5. SKPP high robustness issues  

 
Notable among the challenges that have surfaced 

during the development of the SKPP are the 
application of the principle of least privilege to provide 
a finer grained information flow control, dynamic 
configuration change during run-time, and hardware 
assurance.  These issues are critical aspects of 
assurance in a highly robust TOE.   

 
5.1.   Principle of least privilege 
 

The traditional separation kernel approach only 
addresses resource isolation and ignores the problems 
relating to all-or-nothing security within an individual 
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Figure 2.  Security functional requirements in SKPP 



partition.  Over-privileged programs are left for 
application developers and evaluators to resolve.  For 
highly robust systems, all-or-nothing security is a 
significant issue.  

Saltzer and Schroeder concluded that least privilege 
is a design principle that can limit the damages caused 
by both programmatic and operational errors [18].  
They defined least privilege as the restriction that 
“every program and every user of the system should 
operate using the least set of privileges necessary to 
complete the job.  Primarily, this principle limits the 
damage that can result from an accident or error.  It 
also reduces the number of potential interactions 
among privileged programs to the minimum for correct 
operation, so that unintentional, unwanted, or improper 
uses of privilege are less likely to occur.”  In other 
words, mechanisms and subjects should have no more 
privilege than what is necessary to perform the actions 
for which they were designed. 

Several benefits accrue as a result of the application 
of the principle of least privilege.  First, should a 
component become corrupted, the damage resulting 
from its failure will be less pervasive.  Second, because 
the privileges afforded the component will be minimal 
with respect to the overall policy, security analysis of 
the component is less complex. Finally, if a system 
cannot restrict individual users and programs to have 
only the access authorizations that they require to 
complete their functions, the accountability 
mechanisms (e.g., audit) will likely be less able to 
accurately discern the cause of various actions.  Thus, 
the ability of a secure system to realize the goals of 

accountability and the confinement of damage will be 
directly correlated with the level of granularity with 
which the system is able to invoke the principle of least 
privilege. 

For the SKPP, the principle of least privilege is used 
in two different contexts.  Externally, it is used by the 
TSF to restrict access by subjects to privileged 
instructions and resources within a partition.  
Internally, it is applied to the structure of the TSF to 
restrict privileges of internal modules and functions. 

As a consequence, a securely deployed system must 
be capable of supporting least privilege, and must have 
been administratively configured such that any 
programs that might execute will be accorded access to 
the minimal set of resources required to complete the 
job. Hence, a high robustness system should be able to 
apply least privilege at the same granularity as the 
resource abstractions that it exports (e.g., individual 
files and processes). 

 
5.1.1 Least privilege for flow control 

 
The SKPP defines three different TOE abstractions 

based on the granularity with which subjects and 
resources are exported by the TSF.  This enables the 
SKPP to support different use cases of information 
flow control with varying granularity of control over 
subject-resource interaction.  The ST author is required 
to select the abstraction that corresponds best to the 
TSF. 

The least privilege abstraction is the most fine-
grained use case.  It requires the TSF to be capable of 

Table 1. Authorization Matrix for the Least Privilege Abstraction [1] 
 

Partition A 
Resources 

Partition B 
Resources Partition C Resources 

 

Pa
rt

iti
on

 A
 

R1 R2 R3 Pa
rt

iti
on

 B
 

R4 R5 R6 Pa
rt

iti
on

 C
 

R7 R8 R9 R10 

Partition A RW  R  W  
S1 RW R W - R - W - W - 
S2 W RW R R - R W W - W 

Partition 
A 

Subjects S3 

 

R - RW

 

R R - 

 

- W W - 
Partition B -  -  -  

- - - - - - - - - - - 

- - - - - - - - - - - 
Partition 

B  
Subjects - 

 

- - - 

 

- - - 

 

- - - - 

Partition C -  RW  R  
S4 - - - RW R W R R - R 
S5 - - - W RW - - R R R 

Partition 
C 

Subjects S6 

 

- - - 

 

R W RW

 

R - - R 
 



supporting multiple heterogeneous subjects and 
resources in a partition and that to discern between 
those subjects and resources for the purpose of 
information flow control.  Specifically, the TSF must 
enforce the information flow control policy in terms of 
both partition-to-partition flows and subject-to-
resource flows.  The enforcement rules as paraphrased 
from the FDP_IFC and FPD_IFF requirements are as 
follows: 

 
 TSF shall allow an operation of a subject on an 

exported resource only if: 
- The partition-to-partition flow rule explicitly 

authorizes the operation and 
- The subject-to-resource flow rule explicitly 

authorizes the operation 
 
A sample authorization matrix to illustrate the 

SKPP least privilege abstraction is depicted in Table 1. 
Ten exported resources are mapped to partitions, where 
each exported resource can be allocated to one and 
only one partition.  Similarly, six resources are 
individually mapped to one and only one partition.  No 
subjects have been mapped to Partition B.  The access 
authorizations of each subject to each resource appear 
in the cells of the matrix.  The authorizations of a set of 
subjects that are mapped to the same partition can be 
heterogeneous with respect to both resources in the 
subjects’ own partition as well as to resources in other 
partitions. 

Since the SKPP is intended to be applicable to 
different implementations, the FDP_IFC and FPD_IFF 
requirements are structured to support two other use 
cases where subject-resource interaction is “policy-
equivalent” to that of their partition (s).   

The second use case is a degenerate configuration 
where there is only one subject in the subject’s 
partition and only one external resource in the 
resource’s partition.   The TSF effectively enforces 
information flow rules at the granularity of the flows 
between partitions.  This constitutes the partition 
abstraction. 

In the last use case, the TSF supports multiple 
subjects and resources in a partition.  However, the 
resource-access needs of all subjects of a given 
partition are homogenous and so the TSF treats them 
all equally with respect to their authorizations to access 
the exported resources in a given “resource” partition.  
As with the flow control policy, the TSF does not 
discern between exported resources in a particular 
partition.  For this equivalence set abstraction, the 
subject-to-resource flow rules are at the granularity of 
the flows between and within partitions. 

To make the equivalence set abstraction more 
concrete, consider the following example of a system 
with three partitions: PX, PY, and PZ. Each partition Pn 

contains a set of resources Rn, and a distinct set of 
subjects Sn. The sets may be empty. In the equivalence 
set abstraction all subjects in a given partition Pn will 
have the same authorizations, Anm to all resources in 
another partition, Pm. (where m may equal n). For 
example, for the resources in PY, all subjects in SX will 
have the authorization AXY. Similarly for PZ, they will 
have authorizations AXZ.  For the subjects associated 
with PZ, there will be similar sets of authorizations.  
The access matrix for this arrangement is shown in 
Table 2. 

 
 

Table 2.  Authorization Matrix for the 
Equivalence Set Abstraction 
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5.1.2 Least privilege for architectural 

assurance 
 

Although legacy evaluation criteria imposed 
assurance requirements regarding the application of the 
principle of least privilege to restrict the actions of 
internal modules and functions [19], the CC lacks such 
explicit requirements.  When applied to the design and 
internal structure of the TSF, least privilege can aid 
reasoning about the assurance properties of the system.  
Placing limits on the privileges that a module can have 
helps reduce the complexity of the implementation.  
Layering, minimization, and least privilege, when used 
in combination, enable a greater degree of scrutiny, 
which will increase the confidence in the analysis of 
the correctness of the TSF.   These concepts are closely 
tied to, but conceptually different from, the notions of 
modularity and encapsulation [20]. 

In the SKPP, both functional and assurance 
requirements are extended to require developers to 
apply the principle of least privilege to all TSF (i.e., 
internal) modules and functions.  An element is added 
to the FPT class that limits internal functions and 
modules of the TSF to minimal scope and accessibility 
to resources.  A parallel element is added to ADV_INT 
to address the related assurance requirements. 
 
5.2.   Dynamic configuration 

 



To support special cases where it is desirable for the 
TOE to be able to change its configuration (e.g., the 
occurrence of overriding environmental security 
conditions), the SKPP allows the TOE to change 
resource allocations and policy rules during runtime.  
Dynamicity and complexity go hand-in-hand and there 
are problems associated with dynamic configuration 
that the TOE developers and evaluators must address.  

First, the necessity to provide a coherent security 
policy, as reflected in the model, is always an issue for 
secure systems.  Arbitrary changes to the configuration 
data are hard to understand with respect to policy since 
any changes would have to be evaluated against the 
policy to make sure they are still correct.  This 
represents more work, more complexity, and more 
opportunity for errors.  With dynamic reconfiguration 
of the security policy itself, unless done very 
conservatively, the analysis of the policy and model 
may be very difficult – for example, ensuring that 
secure state is maintained across a policy transition, 
and that the changes do not cause undefined 
combinations of policies after the transition.  The 
difficulty of analyzing arbitrary policy mechanisms is 
known to present an undecidable problem [21].  For 
the SKPP, the vendor must convince evaluators of the 
adequacy of their solution.  

The SKPP approach to dynamicity is to limit how 
the policy may change by defining the following 
hierarchy of configuration changes that a TOE can 
provide during runtime [22]: 

 Static configuration change 
 Constrained dynamic configuration change 
 Unconstrained dynamic configuration change 

Runtime configuration change capabilities are 
optional.  The characteristics and assurance issues of 
each capability is discussed in the following sections. 

It is important to note that a conformant kernel must 
provide the capability to change the TOE configuration 
while the TOE is offline.  This requires the TOE to 
access a vector of configuration attributes when it 
initializes.  This configuration change capability allows 
for a complete removal of previous security state as 
well as pre-analysis of subsequent security policies.   
The assurance issue associated with this capability is to 
ensure that each configuration used represents the 
intended organizational security policy and operational 
conditions.  

 
5.2.1 Static configuration change 
 

This capability is the most basic form of dynamicity 
— it requires the TOE to be able to load multiple 
configuration vectors at initialization, one of which 
will define the current or operational configuration 
after the completion of initialization.  The TSF must 
also provide a mechanism for an authorized subject to 

select the next vector. i.e., the one that will become 
operational when the TOE is next initialized.  

Alternatively, the TSF may provide a mechanism 
for the transition from current to next configuration to 
take effect during runtime, i.e., without reinitialization.   
The TSF must restrict to authorized subjects the ability 
to select the next configuration and to cause the 
configuration transition.   

This capability requires the TOE to properly 
execute the requested configuration change as 
specified by the authorized subject.  When a runtime 
change is invoked, the TSF has the additional 
requirement to continuously maintain secure state 
before, during and after the configuration change. 
These concerns are in addition to the assurance issue 
associated with the offline configuration change 
capability. Other security characteristics such as those 
relating to covert channels must also be preserved 
during and after the configuration change. 
 
5.2.2 Constrained dynamic configuration 

change 
 
This capability allows ad hoc runtime configuration 

changes that are constrained by static rules defined 
either in the configuration data or in the TSF itself.  
Depending on the comprehensiveness of the rules (i.e., 
the range of allowed changes), the authorized subject 
that performs these changes may be an extension of the 
TSF because is shares the responsibility to properly 
enforce the policy. 

The additional assurance requirement associated 
with this option is to ensure that the constraints and the 
ad hoc policy change requests are consistent with the 
organizational security policy.  Furthermore, the level 
of trustworthiness of the authorized subject that is 
allowed to invoke this capability must be 
commensurate with the level of trustworthiness vetted 
in the TSF. 

 
5.2.3 Unconstrained dynamic configuration 

change 
 
This capability affords an authorized subject the 

flexibility to arbitrarily change any and all aspects of 
the current configuration.  Unlike the constrained 
dynamic configuration change, this capability has no 
constraints.  The lack of constraints exacerbates the 
difficulty in the preservation of secure state before, 
during, and after the configuration change, and 
indicates that the authorized subject is an extension of 
the TSF.  Hence, the additional assurance challenge 
associated with this capability is to provide a 
convincing definition of “secure transition” in the 
security policy model.  



Since a configuration change potentially alters the 
security policy of the system, the formal security 
policy model must represent the change from one 
policy to the next, and the model proof must show that 
this transition preserves security.  The chain of 
evaluation evidence linking the system implementation 
to the model will then ensure that the system preserves 
security during the configuration change. 

Given the issues related to dynamic configuration 
discussed previously, the moderate and full dynamic 
configuration change capabilities are considered 
beyond the scope of the SKPP and will require a ST-
based rather than a PP-based evaluation.  In this case, 
the ST must define the functional and assurance 
requirements for the supported capability, and justify 
that the core security objectives including the ability to 
transition to a secure state without being compromised 
are continuously satisfied during the course of the 
configuration change.   

 
5.3.   Hardware assurance 

 
Since the time of the Trusted Computer System 

Evaluation Criteria [19], it has been generally 
understood that, for high robustness, hardware must be 
considered as part of the TSF.  Karger and Kurth had 
argued that, for high assurance composite evaluation, 
the ETR-lite concept vetted by the European CC 
certification agencies is not adequate and that 
additional information sharing among the hardware 
developers, software developers, and the various 
evaluators is critical to the success of a high assurance 
evaluation [23].  

A hindrance to hardware verification is the fact that 
the hardware vendors do not generally share design 
documents with their customers, due to proprietary 
concerns.  Thus it is difficult for TOE vendors to 
produce detailed design and assurance documentation 
regarding TOE hardware components.  Were those 
documents available, given the abilities of modern 
hardware design tools (e.g., to organize and document 
a layered, modular design), many, if not all, high 
robustness ASRs could be applied in the evaluation of 
TSF hardware components [24].    

The threat of targeted hardware subversion has been 
a long-standing concern in the development of highly 
secure systems [25]. In particular, once a given 
hardware component for the TOE has been selected, 
this threat, can, in the current environment, be 
addressed through a requirement to never upgrade 
hardware (or development tools, for that matter) after 
the initial TOE design.  Such a requirement would be 
prohibitively expensive.    

Descriptions of the TSF’s dependencies on the 
hardware and how the hardware security mechanisms 
are used correctly in the security architecture of the 

TSF, is probably the best possible approach in this era.  
These descriptions should be at a level of detail and 
rigor that is consistent with the TOE’s evaluation level.   

In the current version of the SKPP, hardware 
assurance is still unresolved although we have 
proposed a set of assurance requirements that is under 
review by the funding organization.  The new 
composition class, ACO, in CC Version 3.0 was used 
as a model for these proposed requirements.   

 
6.  CC Version 3.0 transition issues 

 
The SKPP was developed based on CC Version 2.2.  

A preliminary effort to transition the SKPP to CC 
Version 3.0 was conducted.  Hardware assurance is 
still not addressed in the new version.  Some of the 
other more notable challenges are discussed here.   

 
6.1.1 Information flow policy enforcement 

 
We found that CC Version 3.0 is significantly 

different, but from our initial investigation, the 
FDP_ACC requirements in Version 3.0 appears to be 
simpler to use than the combined FDP_IFC and 
FDP_IFF classes with respect to expressing 
information flows rules.  In FDP_ACC, the three 
classes can be presented more simply.  This 
straightforward construction can make the 
requirements more understandable. 

 
6.1.2 Security attributes binding 
 

The SKPP requires the binding of security attributes 
to exported resources when the resource is created.   

The current thought is to define a two-step process.  
Registration allows the kernel to use the configuration 
data to determine the attributes of the exported 
resources that exist during runtime and to keep track of 
that information in the kernel data structure.  The 
binding of the security attributes obtained during 
registration takes place during the Initialization step.  
This is when the exported resource is actually created. 
The FIA_URE and FDP_ISA families are being 
considered for this approach.  However, more 
investigation is still needed in this area. 

 
6.1.3 Covert channel analysis by evaluators 

 
In CC Version 3.0, covert channel analysis is 

handled rather obliquely, although the TOE developer 
is required to conduct the CCA via ADV and ATE 
with respect to the unobservability functional 
requirement.   Since the functional requirement says, in 
essence, that there will be no covert channels, it 
follows that the ADV and ATE will ensure that that is 



the case, amounting to “covert channel analysis,” with 
the participation of both the vendor and the evaluators.  
Unfortunately, the lack of explicit wording could lead 
to a variety of interpretations and consequent confusion 
regarding the responsibility for CCA.   

These issues should be addressed in subsequent 
versions of the CC. 

 
7. Future work and conclusion 
 

Robustness is “a characterization of the strength of 
a security function, mechanism, service or solution, 
and the assurance (or confidence) that it is 
implemented and functioning correctly.” [12] High 
robustness provides the highest level of confidence in 
the implementation of security services and 
mechanisms.  The creation of a protection profile based 
on the Common Criteria that addresses high robustness 
issues is uncharted territory.  Although the Common 
Criteria provides a framework for describing very 
rigorous requirements at its highest evaluation 
assurance levels, we found that several extensions were 
imposed by the need to articulate high robustness for a 
separation kernel.  Additionally, several new 
requirements were identified, including those for both 
external and internal least privilege, and dynamic 
configuration.  For the former, the TSF must be able to 
restrict access by subjects to privileged instructions and 
resources within a partition.  In the case of the latter, 
least privilege is applied to the structure of the TSF 
itself, restricting privileges of internal modules and 
functions. 

The protection profile contains a set of 
configuration change requirements ranging from 
manual reconfiguration to a highly dynamic option. 
That range is paralleled by increasing complexity of 
the TSF and may motivate innovative assurance 
arguments. 
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